Toward Seamless Weather-Climate Prediction with a Global Cloud Resolving Model

نویسندگان

  • Tim Li
  • Shian-Jiann Lin
  • Melinda S. Peng
چکیده

The long-term goal of this project is to developing a seamless weather and climate prediction system that has capability to predict accurately both weather phenomena such as tropical cyclones (TC) and other extreme weather events and longer climate-scale phenomena such as the Madden-Julian Oscillation (MJO) and the El Nino-Southern Oscillation (ENSO). Organized moist convections in the tropical atmosphere have their origins at space scale of less than 10 km, and they play a key role in the initiation and maintenance of mesoscale weather events such as super cloud clusters and large-scale phenomena such as MJO. The Navy is in urgent need to develop such a global high resolution model that has a proper dynamic core and physics packages and is capable of representing realistically convection and clouds across a wide range of spatial and temporal scales and suitable for prediction of extreme events in regional and global scales.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of neural network convection parameterizations for climate and NWP models using Cloud Resolving Model simulations1

A novel approach based on the neural network (NN) technique is formulated and used for development of a NN ensemble stochastic convection parameterization for climate models. This fast parameterization is built based on data from Cloud Resolving Model (CRM) simulations initialized with and driven by the TOGA-COARE data available for the 4-month winter season from November 1992 to February 1993....

متن کامل

24 Quaas et al.indd

To date, no observation-based proxy for climate change has been successful in quantifying the feedbacks between clouds and climate. The most promising, yet demanding, avenue to gain confi dence in cloud–climate feedback estimates is to utilize observations and large-eddy simulations (LES) or cloud-resolving modeling (CRM) to improve cloud process parameterizations in large-scale models. Sustain...

متن کامل

CWRF Ready for Climate Service

The CWRF has been developed as the Climate extension of the Weather Research and Forecasting model (WRF, Skamarock et al. 2008) by incorporating numerous improvements in representation of physical processes and integration of external (top, surface, lateral) forcings that are crucial to climate scales, including interactions between land–atmosphere–ocean, convection–microphysics and cloud–aeros...

متن کامل

Cluster analysis of cloud regimes and characteristic dynamics of midlatitude synoptic systems in observations and a model

[1] Global climate models typically do not correctly simulate cloudiness associated with midlatitude synoptic systems because coarse grid spacing prevents them from resolving dynamics occurring at smaller scales and there exist no adequate parameterizations for the effects of these subgrid-scale dynamics. Comparison of modeled and observed cloud properties averaged over similar regimes (e.g., c...

متن کامل

Meridionally tilted ice cloud structures in the tropical upper troposphere as seen by CloudSat

It remains challenging to quantify global cloud properties and uncertainties associated with their impacts on climate change because of our poor understanding of cloud three-dimensional (3-D) structures from observations and unrealistic characterization of 3-D cloud effects in global climate models (GCMs). In this study we find cloud 3-D effects can cause significant error in cloud ice and radi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013